4.8: Quadratic Formula Notes "I WILL ...

Solve using the Quadratic Formula."

I. Discriminant

- A. Standard form equation, $ax^2 + bx + c = 0$
- B. Discriminant is from standard form, the expression, b^2 –4ac indicates how many real number solutions the equation has
- C. To Determine Solutions:
 - a. POSITIVE 2 Real Solutions
 - b. ZERO 1 Solution, Double Root
 - c. NEGATIVE 2 Imaginary Solutions
- II. The Quadratic Formula: x =
 - A. Make sure the equation equals to zero
 - B. Identify A, B, C
 - C. Plug into equation
 - D. Check your work

III. Model Problems

Ex 1: Determine the amount of solutions for this equation and the discriminant of $x^2 - 4x + 3 = 0$	Your Turn: Determine the amount of solutions for this equation and the discriminant of $-2x^2 - 5x - 6 = 0$
Ex 2: Solve $x^2 - 4x + 3 = 0$ using Quadratic Formula	Ex 3: Solve $-5x^2 - 15x + 10 = 0$ using Quadratic Formula

Your Turn: Solve $-9x - 1 = -9x^2$ using Quadratic Formula	Ex 4: Solve $x^2 + 4x + 13 = 0$ using Quadratic Formula
Ex 5: Solve $x^2 - 2x + 19 = 0$ using Quadratic Formula	Your Turn: Solve $-2x^2 + 4x - 3 = 0$ using Quadratic Formula
Ex 6: An object is thrown upward from the top of a 200-foot cliff with a velocity of 12 feet per second. The height h in feet of the object after t seconds is $h = -16t^2 + 12t + 200$. How long after the object is thrown will it strike the ground? Round your answer to the nearest thousandth of a second.	Ex 7: An object is thrown upward at the edge of a building, 45 feet high, with the initial velocity of 20 feet per second. The height h in feet of the object after t seconds is $h = -16t^2 + 20t + 45$. How long after the object is thrown will it strike the ground? Round your answer to the nearest thousandth of a second.
Your Turn: The height h in feet of a person on a waterslide is modeled by the function, $h(t) = -0.025t^2 - 0.5t + 50$, where t is the time in seconds. At the bottom of the slide, the person lands in a swimming pool. To the nearest tenth of a second, how long does the ride last?	Ex 8: The area of a rectangle is 84 square inches. If the width is $x + 3$ inches and length is $x - 2$ inches, what is the length of the rectangle?
Your Turn: A rectangle is 7 cm long and 4 cm wide. When each dimension is increased by x cm, the area is tripled. Find x .	

Assignment: Pg 296: 3-21 odd, 31-39 odd, 49; Pg 290: 63, 65 (using Q. Formula)

EQUATIONS IN STANDARD FORM Use the quadratic formula to solve the equation.

3.
$$x^2 - 4x - 5 = 0$$

4.
$$x^2 - 6x + 7 = 0$$

3.
$$x^2 - 4x - 5 = 0$$
 4. $x^2 - 6x + 7 = 0$ **5.** $t^2 + 8t + 19 = 0$

6.
$$x^2 - 16x + 7 = 0$$

7.
$$8w^2 - 8w + 2 = 0$$

$$8. 5p^2 - 10p + 24 = 0$$

9.
$$4x^2 - 8x + 1 = 0$$

10.
$$6u^2 + 4u + 11 = 0$$

11.
$$3r^2 - 8r - 9 = 0$$

12. TAKS REASONING What are the complex solutions of the equation $2x^2 - 16x + 50 = 0$?

$$(A)$$
 4 + 3*i*, 4 - 3*i*

(B)
$$4 + 12i, 4 - 12i$$

$$(\mathbf{c})$$
 16 + 3*i*, 16 - 3*i*

D
$$16 + 12i, 16 - 12i$$

EQUATIONS NOT IN STANDARD FORM Use the quadratic formula to solve the equation.

13.
$$3w^2 - 12w = -12$$
 14. $x^2 + 6x = -15$ **15.** $s^2 = -14 - 3s$

14.
$$x^2 + 6x = -15$$

15.
$$s^2 = -14 - 3s$$

16.
$$-3v^2 = 6v - 10$$

17.
$$3 - 8\nu - 5\nu^2 = 2\nu$$

18.
$$7x - 5 + 12x^2 = -3x$$

16.
$$-3y^2 = 6y - 10$$
 17. $3 - 8v - 5v^2 = 2v$ **18.** $7x - 5 + 12x^2 = -3x$ **19.** $4x^2 + 3 = x^2 - 7x$ **20.** $6 - 2t^2 = 9t + 15$ **21.** $4 + 9n - 3n^2 = 2 - n$

20.
$$6 - 2t^2 = 9t + 15$$

21.
$$4 + 9n - 3n^2 = 2 - n$$

USING THE DISCRIMINANT Find the discriminant of the quadratic equation and give the number and type of solutions of the equation.

31.
$$x^2 - 8x + 16 = 0$$

32.
$$s^2 + 7s + 11 = 0$$

$$33. 8p^2 + 8p + 3 = 0$$

34.
$$-4w^2 + w - 14 = 0$$

35
$$5x^2 + 20x + 21 = 0$$

36.
$$8z - 10 = z^2 - 7z + 3$$

37.
$$8n^2 - 4n + 2 = 5n - 11$$

38.
$$5x^2 + 16x = 11x - 3x^2$$

34.
$$-4w^2 + w - 14 = 0$$
 35. $5x^2 + 20x + 21 = 0$ **36.** $8z - 10 = z^2 - 7z + 3$ **37.** $8n^2 - 4n + 2 = 5n - 11$ **38.** $5x^2 + 16x = 11x - 3x^2$ **39.** $7r^2 - 5 = 2r + 9r^2$

ERROR ANALYSIS Describe and correct the error in solving the equation.

$$3x^{2} + 6x + 15 = 0$$

$$x = \frac{-6 \pm \sqrt{6^{2} - 4(3)(15)}}{2(3)}$$

$$= \frac{-6 \pm \sqrt{-144}}{6}$$

$$= \frac{-6 \pm 12}{6}$$

$$= 1 \text{ or } -3$$

$$x^{2} + 6x + 8 = 2$$

$$x = \frac{-6 \pm \sqrt{6^{2} - 4(1)}}{2(1)}$$

$$= \frac{-6 \pm \sqrt{4}}{2}$$

$$= \frac{-6 \pm 2}{2}$$

$$= -2 \text{ or } -4$$

- **63. VOLLEYBALL** The height h (in feet) of a volleyball t seconds after it is hit can be modeled by $h = -16t^2 + 48t + 4$. Find the volleyball's maximum height.
- **65.) VIDEO GAME REVENUE** A store sells about 40 video game systems each month when it charges \$200 per system. For each \$10 increase in price, about 1 less system per month is sold. The store's revenue can be modeled by y = (200 + 10x)(40 - x). Use vertex form to find how the store can maximize monthly revenue.