	onjugates and Complex Numbers			
"I WII Under	stand how to convert conjugates."			
I. Rule	e: No radicals are allowed in the denominator			
II. The	e Conjugate			
A.	Rule: No in the denominator			
	is the complex number's opposite sign			
	When we multiply a compound equation with a radical, we must multiply the			
	OPPOSITE to get rid of the radical to both the (TOP) and			
	(BOTTOM)			
D	Multiply the bases and radicals together			
	aginary Numbers			
	•			
	are numbers that can be written as a real number times "i."			
	. View the radical without the negative and simplify it			
C.	After simplified form, attach an "i" onto the real number			
D.	Simplify further, if needed			
IV. Co	omplex Numbers			
A.	. Complex Numbers are numbers that are associated with a second real number			
	with an ordered pair,			
В.	<i>a</i> + <i>bi</i> ; <i>a</i> =; <i>b</i> =			
C.	is the complex number's opposite sign			
_	a. Example: $2 + 3i$'s conjugate is $2 - 3i$			
D.	Remember: in the denominator			
	SIMPLIFY RADICALS FIRST then OPERATE			
V. Rul	les with Imaginary Numbers			
A.	Rules with Imaginaries:			
	A. $i^1 = i$			
	B. $i^2 = -1$			
B.	Answers CAN have an i but <u>CANNOT</u> have two i 's			
C.	Two <i>i</i> 's make −1			
D.	Rule of 4			
	A. Look at the exponent of the imaginary number and divide by 4			
	B. View only the remainder or decimal			
	C. Convert the problem with the number			

Imaginary Power	Remainder	Decimal (in calc)	Imaginary Number
i^1			
i^2			
i^3			
i^4			

VI. Model Problems

Ex 1: Rationalize $\frac{1}{\sqrt{3}}$	Ex 2: Rationalize $\frac{2}{\sqrt{5}}$
Ex 3: Rationalize $\frac{2\sqrt{16}}{\sqrt{9x}}$	Your Turn: Rationalize $\frac{3\sqrt{25}}{\sqrt{4x}}$
Ex 4: Rationalize $\frac{1}{\sqrt[3]{7}}$	Your Turn: Rationalize $\sqrt[3]{\frac{2}{9}}$
Ex 5: Rationalize $\frac{1}{4+\sqrt{3}}$	Ex 6: Rationalize $\frac{1}{\sqrt{5}-2}$
Ex 7: Rationalize $\frac{\sqrt{32}}{\sqrt{2} + \sqrt{5}}$	Your Turn: Rationalize $\frac{3\sqrt{x}}{2\sqrt{x} + \sqrt{y}}$
Ex 8: Simplify, $\sqrt{-4}$ Ex 9: Simplify, $\sqrt{-11}$	Ex 10: Simplify, 3 $\sqrt{-20}$ Your Turn: Simplify, $-2\sqrt{-75}$

Ex 11: Multiply $(i\sqrt{3})^2$	Ex 12: Multiply ($(4i)^2$	Your Turn: Multiply $(5i\sqrt{2})^2$
Ex 13: Multiply $\sqrt{-6} \cdot \sqrt{-6}$	Ex 14: Multiply $\sqrt{-3} \cdot 2\sqrt{-5}$		Your Turn: Multiply $\sqrt{-4x} \cdot \sqrt{-16x^3}$
Ex 15: Solve the equation, $x^2 = 144$	Ex 16: Solve the equation, $5x^2 + 90 = 0$		Your Turn: Solve the equation, $9x^2 + 25 = 0$
Ex 17: Find the values of x and y that make the equation $4x + 10i = 2 - (4y)i$ true.	Ex 18: Find the values of x and y that make the equation $2x - 6i = -8 + (20y)i$ true.		Your Turn: Find the values of x and y that make the equation $-8 + (6y)i = 5x - i\sqrt{6}$ true.
Ex 19: Simplify i^7	Ex 20: Simplify i	25	Your Turn: Simplify i ⁵⁸⁹²
Ex 21: Simplify $i^{25} + i^{36}$	Yo	our Turn: Sii	mplify $i^{21} + i^{30}$

Assignment: WKST