FIRST DERIVATIVE TEST

Section 3.3 Calculus AP/Dual, Revised ©2017

viet.dang@humbleisd.net

DEFINITIONS

- A. <u>First Derivative Test</u> is to find the intervals of increasing or decreasing and located any relative extrema
 - **1.** If f'(x) > 0, then f is INCREASING
 - **2.** If f'(x) < 0, then f is DECREASING
- B. <u>Critical Point/Critical Number</u> can tell us whether we have a relative minimum or relative maximum when the derivative is equal to <u>ZERO</u> or <u>UNDEFINED</u>
 - **1.** If f' changes signs from positive to negative, then it is a RELATIVE MAXIMUM
 - **2.** If f' changes signs from negative to positive, then it is a RELATIVE MINIMUM

Identify the intervals where function f(x) is increasing or decreasing.

$$f(x)$$
 is Increasing at $I(0,3)$ when $f' > 0$
 $f(x)$ is Decreasing at $I(-3,0) \cup (3,6)$ when $f' < 0$

§3.3: First Derivative Test

Identify the intervals where function f(x) is increasing or decreasing.

YOUR TURN

Identify the intervals where function f(x) is increasing or decreasing.

IDENTIFYING INCREASING AND DECREASING FUNCTIONS

- A. Find the Critical Points by taking the derivative and write intervals
- **B.** Substitute a value from each interval into to test it
- C. Indicate how the function behaves (Let f be a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b))
 - 1. If f'(x) > 0 for all x in (a, b), then f is increasing on [a, b]
 - 2. If f'(x) < 0 for all x in (a, b), then f is decreasing on [a, b]
 - 3. If f'(x) = 0 for all x in (a, b), then f is <u>constant</u> on [a, b]
- D. Apply to the ORIGINAL function to establish the maximums and minimums
- E. Make sure to justify reasoning with explanations and math symbols/definitions

Find the open intervals on which $f(x) = x^2 + 8x + 10$ is increasing or decreasing and locate any Relative Extrema.

$$f(x) = x^{2} + 8x + 10$$
$$f'(x) = 2x + 8$$
$$2(x + 4) = 0$$

Critical Number :
$$x = -4$$

Find the open intervals on which $f(x) = x^2 + 8x + 10$ is increasing or decreasing and locate any Relative Extrema.

$$f'(x) = 2x + 8$$

Critical Point : (-4, -6)

(−∞,−4)	x = -4	(−4,∞)
f'(-5)	f(-4)	f'(0)
f'(-5) = 2x + 8	$f\left(-4\right) = x^2 + 8x + 10$	f'(0) = 2x + 8
f'(-5) = 2(-5) + 8 $f'(-5) = (-10) + (8)$	$f(-4) = (-4)^{2} + 8(-4) + 10$ $f(-4) = 16 - 32 + 10$	f'(0) = 2(0) + 8
f'(-5) = -2	(-4,-6)	f'(0) = 8
– DECREASING	$f(-4): - \rightarrow +$ Relative MIN	+ INCREASING

Find the open intervals on which $f(x) = x^2 + 8x + 10$ is increasing or decreasing and locate any Relative Extrema.

f(x) is Increasing at $I(-4,\infty)$ when f' > 0f(x) is Decreasing at $I(-\infty, -4)$ when f' < 0

f(x) has a Relative Minimum at (-4, -6)when the sign of f'(x) changes from Negative to Positive.

f(x) does not have a Relative Maximum.

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is increasing or decreasing and locate any Relative Extrema.

$$f(x) = x^3 - \frac{3}{2}x^2$$
$$f'(x) = 3x^2 - 3x$$
$$3x(x-1) = 0$$

Critical Points :
$$x = 0, x = 1$$

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is increasing or

decreasing and locate any Relative Extrema.

$$f'(x) = 3x^2 - 3x$$
Critical Points: $(0,0) \& (1,-\frac{1}{2})$

$$f'(-1) = 3x^2 - 3x$$

$$f'(0) = x^3 - \frac{3}{2}x^2$$

$$f'(0) = 0 = 0$$

$$f'(1/2) = 3x^2 - 3x$$

$$f'(1/2$$

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is increasing or decreasing and locate any Relative Extrema.

f(x) is Increasing at $I(-\infty,0) \cup (1,\infty)$ when f'(0) > 0f(x) is Decreasing at I(0,1) when f'(0) < 0

f(x) has a Relative Maximum at (0,0)because the sign of f'(x) changes from Positive to Negative.

$$f(x)$$
 has a Relative Minimum at $\left(1, -\frac{1}{2}\right)$

because the sign of f'(x) changes from Negative to Positive.

Find the open intervals on which $h(x) = \frac{x+3}{x^2}$ is increasing or decreasing and locate any Relative Extrema.

h(x) is Increasing at I(-6,0) when h' > 0h(x) is Decreasing at $I(-\infty, -6) \cup (0,\infty)$ when h' < 0

h(x) has a Relative Minimum at $\left(-6, -\frac{1}{12}\right)$

because the sign of h'(x) changes

from Negative to Positive.

h(x) has no Relative Maximum at x = 0 because there is a vertical asymptote.

YOUR TURN

Find the open intervals on which $f(x) = x^3 - 6x^2 + 15$ is increasing or decreasing and locate any Relative Extrema.

f(x) is Increasing at $I(-\infty,0) \cup (4,\infty)$ when f' > 0f(x) is Decreasing at I(0,4) when f' < 0

f(x) has a Relative Maximum at (0,15) because the sign of f'(x) changes from Positive to Negative.

f(x) has a Relative Minimum at (4, -17)because the sign of f'(x) changes from Negative to Positive.

Find the open intervals from $[0, 2\pi]$ on which $f(x) = \cos x - 1$ is increasing or decreasing and Extrema.

$$f(x) = \cos x - 1$$
$$f'(x) = -\sin x$$
$$-\sin x = 0$$

CP :
$$x = 0, x = \pi, x = 2\pi$$

Find the open intervals from $[0, 2\pi]$ on which $f(x) = \cos x - 1$ is increasing or decreasing and Extrema.

x = 0	(0 , π)	$x = \pi$	$(\pi, 2\pi)$	$x = 2\pi$
f(0)	$f'\left(\frac{\pi}{4}\right)$	$f(\pi)$	$f'\left(\frac{3\pi}{2}\right)$	$f(2\pi)$
$f(0) = \cos(0) - 1$		$f(0) = \cos(\pi) - 1$	(3π) (3π)	$f(2\pi) = \cos(2\pi) - 1$
f(0) = (1) - (1)	$f'\left(\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right)$	$f(\pi) = (-1) - (1)$	$f'\left(\frac{3\pi}{2}\right) = -\sin\left(\frac{3\pi}{2}\right)$	$f(\pi) = (1) - (1)$
f(0) = 0	$f'\left(\frac{\pi}{4}\right) = -\left(\frac{\sqrt{2}}{2}\right)$	$f(\pi) = -2$	$f'\left(\frac{\pi}{4}\right) = -(-1)$	$f(2\pi) = 0$
(0,0) Absolute MAX	– Decreasing	$(\pi, -2)$ Absolute MIN	+ Increasing	$(2\pi, 0)$ Absolute MAX

Find the open intervals from $[0, 2\pi]$ on which $f(x) = \cos x - 1$ is increasing or decreasing and Extrema.

f(x) is increasing at $I(\pi, 2\pi)$ when f' > 0f(x) is decreasing at $I(0, \pi)$ when f' < 0

f(x) has an Absolute Maximum at (0,0) and $(2\pi, 0)$ because the sign of f'(x)changes from POS to NEG.

f(x) has an Absolute Minimum at $(\pi, -2)$ because the sign of f'(x) changes from NEG to POS.

YOUR TURN

Find the open intervals from $[0, 2\pi]$ on which $f(x) = \frac{x}{2} - \cos x$ is increasing or decreasing and Extrema.

f(x) is increasing at $I\left(\frac{\pi}{3}, \frac{5\pi}{3}\right)$ when f' > 0f(x) is decreasing at $I\left(0,\frac{\pi}{3}\right) \cup \left(\frac{5\pi}{3},2\pi\right)$ when f' < 0f(x) has a Relative Maximum at $\left(\frac{\pi}{3}, \frac{\pi}{6}, \frac{\pi}{2}\right)$ because the sign of f'(x) changes from POS to NEG. f(x) has a Relative Minimum at $\left(\frac{5\pi}{3}, \frac{5\pi}{6}, \frac{1}{2}\right)$ because the sign of f'(x) changes from NEG to POS.

7/30/2018 1:18 AM

§3.3: First Derivative Test

AP MULTIPLE CHOICE PRACTICE QUESTION 1 (NON-CALCULATOR)

The function f is given by $f(x) = x^4 + x^2 - 2$. On which of the following intervals is f increasing?

(A)
$$\left(-\frac{1}{\sqrt{2}},\infty\right)$$

(B) $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$
(C) $(0,\infty)$
(D) $(-\infty,0)$

AP MULTIPLE CHOICE PRACTICE QUESTION 1 (NON-CALCULATOR)

The function f is given by $f(x) = x^4 + x^2 - 2$. On which of the following intervals is f increasing?

Vocabulary	Connections and Process			Answer and Justifications
First Der. Test	f'(x) =	$=4x^{3}+2x$		
Increasing	$4x^3 + 2$	x = 0		
	$2x\left(2x^2+1\right)=0$			
	x = 0	$(-\infty, 0)$ f'(-1) $= 4(-1)^3+2(-1)$ = -4-2 = -6 Decreasing	(0,∞) $f'(1) = 4(1)^3 + 2(1)$ = 4 + 2 = 6 Increasing	f is increasing on any interval where $f'(x) > 0$.

ASSIGNMENT

Page 183

3-39 EOO and justify responses